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Abstract. A theorem of purification related to the equilibrium property for the tube shaped 

perfect information game, is derived, in order to reduce the size of the algorithm of finding the 
saddle point for the decision function involved in this type of problem. 
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1. INTRODUCTION AND BASIC CONCEPTS 

 

Generally, each minimax theorem for a class of functions should be 
acompanied by a method of finding the saddle point. The purification theorems are 
meant to reduce the size of the solution and, generally, they accompany the 
saddle point theorems.  

In this paper we intend to prove a purification theorem related to a minimax 
theorem, proved in [2], that applies to other cases than those satisfying the 
conditions, which Kalmar stated in [5] for chess. We shall refer to the class of 
perfect information games satisfying a condition, which we call “the tube 
condition”, introduced in [2]. This type of games includes the Japanese go, but 
does not contain the chess. It also includes games arising in economic relations 
and in military operations as well. The extended form of perfect information games 
is used in order to avoid the loss of cases and information that may occur during 
the reduction process, as shown in [4]. The concept of saddle point with respect to 
a given set, introduced in [3], is crucial allover the proof of the purification theorem. 

Now, let us recall the concept of saddle – point and equilibrium that we are 
going to use in what follows. For the beginning, let us consider two nonempty sets, 
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A and B and a nonempty subset M ⊆ A × B. We denote M1 = prAM and M2 = prBM. 
For a given point (p, q) ∈ M, we denote  

Mp = {y ∈ M2 | (p, y) ∈ M} and Mq = {x ∈ M1 | (x, q) ∈ M}. 

 Obviously, Mp ⊆ B and Mq ⊆ A. Let us consider a function f : A × B → R. The 
concept of saddle – point of a function with respect to a given set was first 
introduced in [3]. 

 Definition 1.1. A point (p, q) ∈ M is said to be a saddle – point of the 
function f with respect to M if  

f (x, q) ≤ f (p, q) ≤ f (p, y), 

for every x ∈ Mq and y ∈ Mp. 

 It was proved in [3] that the following equality is characterising a saddle – 
point of a function f with respect to a set M: 

       v = y)f(x,minmax
xMyAx ∈∈

= y)f(x,maxmin
yMxBy ∈∈

 = v  .   

We use the description from [4] of the extensive form of a perfect 
information game. Let {a, b} be a set of players. A perfect information game is 
represented by a tree given by a finite set of nodes N, which are partially ordered 
by p . The initial node of this tree is considered to be the least element of N with 
respect to this relation and is denoted by O. The set of terminal nodes are  

Z = { z ∈ N | z p  z’ ⇒ z = z’} 

and X = N \ Z is the set of non–terminal nodes. For every x ∈ X, the symbol {x} is 
denoting the corresponding information set, sometimes identified with x itself. The 
set of the immediate successors of x, denoted by C(x), is the set of choices 
available at node x ∈ X. The player that moves at each information set is designed 
by a mapping m : X → {a, b}, denoting the sets of all the information sets 
corresponding to each player by   

Xa = { x ∈ X | m(x) = a} and Xb = { x ∈ X | m(x) = b}. 

The extensive-form payoff functions are given by  

Fa : Z → R and Fb : Z →  R. 

A strategy of player a is a mapping from information sets into available choices. 
The strategy set for a is  

Sa = C(x)
aXx∈

×  

and Sb is similarly defined. Let S = Sa x Sb. A stra tegy profile s ∈ S determines a path 
through the tree. Let us define the function grouping the strategy profiles according 
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to their end points, g : S → S, putting  g(s) = z if and only if s reaches the terminal 
node z. As consequence, the strategic form information sets are given by  

fa = Fa o  g and fb = Fb o  g. 

 In what follows, we start by taking C(O) = {I, 2, …, K}. For each k ∈ C(O), let 
us denote 

)C(xS

xk
Xx

a
k a

p
∈
×= . 

Obviously, if m(O) = a, then  

Sa = C(O) × 







×
=

a
k

K

1k
S  . 

Also, let us denote by Sa(k) = {k} × a
kS . If m(O) ≠ a, then  

Sa = 







×
=

a
k

K

1k
S . 

We put a
S spr a

k
 = a

ks  if sa = (j, a
1s , …, a

ks , …, a
Ks ).  

 Let us discuss about the step number a of a game and denote by Ca  – 1 the 
set of all the nodes eventually reached at step a – 1. The elements of Ca – 1 are 
terminal nodes for step a – 1 and initial nodes for step a. 

 Definition 1.2. A game is said to be tube shaped if for every step a and 
every two nodes  x, y ∈ Ca – 1, the tube condition C(x) = C(y) is satisfied. 

 Let us suppose that the player a choses at steps a∈Na and b at steps ß∈Nb, 
where Na ∪ Nb = {1, 2, 3, …} is the set that counts the successive choices of the 
two players during the game. It is obvious that if Na = {1, 3,…} then Nb = {2, 4,…}. It 
is easy to prove that the tube condition has as a consequence the following: 

 Property 1.3. If a game is tube shaped then both Sa and Sb are rectangular, 
meaning that they satisfy.  

Sa = a
Na

C
a∈

×   and  Sb = a
Na

C
b∈

× . 

The existence theorem of a saddle point with respect to each rectangular 
subset of a tube shaped perfect information game, which is the starting point of 
our investigation, is the following one. 
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Theorem 1.4. Fix a perfect information game and let sets Ya⊆Sa and Yb⊆Sb 
be rectangular. There is a saddle point of fa (respectively fb) with respect to Ya×Yb, 
i.e.  

)s,(sfminmax baa

YsYs aabb ∈∈
 = )s,(sfmaxmin baa

YsYs bbaa ∈∈
  , 

)s,(sfminmax bab

YsYs aabb ∈∈
 = )s,(sfmaxmin bab

YsYs bbaa ∈∈
. 

A purification result is now necessary in order to reduce the size of the 
solution of a procedure of finding the saddle point for a tube shaped perfect 
information game, computed by an algorithm following the steps of the proof of the 
theorem 1.4.  

 

2. PURIFICATION RESULT 

 

First of all we prove that a row is inadmissible with respect to a rectangular 
subset only if it is weakly dominated by a combination that reaches a single 
subtree k. 

Lemma 2.1. For a perfect information game with m(O) = a, if the strategy sa is 
inadmissible with respect to a rectangular set Yb then there exists k and σa ∈ 
∆(Sa(k)) such that 

fa (σa, sb) ≥ fa (sa, sb), for every sb ∈ Yb, 

fa (σa, sb) > fa (sa, sb), for some sb ∈ Yb. 

Proof. Let aŝ  ∈ ∆(Sa) be such tha t  

fa ( aŝ , sb) ≥ fa (sa, sb), for every sb ∈ Yb, 

fa ( aŝ , sb) > fa (sa, sb), for some sb ∈ Yb. 

Let k = 1, 2, …, K , where K  ≤ K, be chosen such that aŝ (ra) > 0 for some ra ∈ Sa(k). 
For each k = 1, 2, …, K , define  

a
kŝ (ra) = 

∑
∈ (k)Sq

aa

aa

aa

)(qŝ

)(rŝ . 

Obviously, a
kŝ  ∈ ∆(Sa(k)). Further, for each sb ∈ Yb, 
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fa ( aŝ , sb) = ∑ ∑
= ∈














⋅













K

1k

ba
k

a

(k)Sq

aa )s,ŝ(f)(qŝ
aa

. 

Suppose that, for each k = 1, 2, …, K , a
kŝ  does not weakly dominate  sa with respect 

to Yb. Then, for each such k, only one of the following situations can hold: 

(i)  fa ( a
kŝ , sb) = fa (sa, sb) for each sb ∈ Yb, 

(ii) there exists rb ∈ Yb with fa (sa, rb) > fa ( a
kŝ , rb). 

Let us notice that if (i) holds for all k = 1, 2, …, K , then for all sb ∈ Yb 

fa ( aŝ , sb) = ∑ ∑
= ∈














⋅













K

1k

baa

(k)Sq

aa )s,(sf)(qŝ
aa

 = fa (sa, sb),  

which is a contradiction. So, (ii) must hold for some k. 

For each k = 1, 2, …, K  satisfying (ii), let  

b
kr := b

(k)S rpr b  

and, if sa ∈ Sa(j) for j≠k, let b
jr := b

(j)S rpr b . Set rb = ( b
1r , …, b

Kr )  where b
kr  is as 

above, if defined, and otherwise b
kr  is an arbitrary element of Yk. Since Yb is 

rectangular, rb ∈ Yb. But 

fa ( aŝ , sb) = ∑ ∑
= ∈














⋅













K

1k

baa

(k)Sq

aa )s,(sf)(qŝ
aa

 < fa (sa, sb),  

where the inequality comes from the fact that (ii) holds for some k = 1, 2, …, K .♦ 

The required purification theorem is now easy to prove, by a forward looking 
procedure. 

Theorem 2.2. Let us consider a tube perfect information game. If the strategy 
sa is inadmissible with respect to a rectangular set Yb  ⊆ Sb, then there exists ra ∈ Sa  
such that  

fa (ra, sb) ≥ fa (sa, sb), for every sb ∈ Yb, 

fa (ra, sb) > fa (sa, sb), for some sb ∈ Yb. 
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Proof. As in the case of theorem 1.4, we proceed by induction on the length 
of the tree. 

Length = 1. Let us suppose m(O)=a, without loss of generality. Here Sb={∅}, 
implying that sb is admissible. Moreover, if there exists σa ∈ ∆(Sa) such that  

fa (σa, O) > fa (sa, O) 

then there is ra ∈ Supp σa such that fa (σa, O) > fa (sa, O), as required. 

Length ≥  2. Assume that the theorem is true for any tree of length ? or less 
and fix a tree of length ? +1.   

First, suppose that m(O) = a. Fix sa ∈ Sa(1) and suppose that sa is inadmissible 
with respect to a rectangular set Yb. Then, by lemma 2.1, there exists a number k 
with σa ∈ ∆(Sa(k)) such that, for all sb ∈ Yb. Without loss of generality, let us pick σa 
such that ra ∈ Supp σa implies that there is sb ∈ Yb with  

fa (ra, sb) ≠ fa (sa, sb). 

Suppose first that Supp σa ⊆ Sa(1). Then there is ra ∈ Sa(1) such that  

fa (ra, b
1s ) ≥ fa (sa, b

1s ), for every b
1s  ∈ Yb, 

fa (ra, b
1s ) > fa (sa, b

1s ), for some b
1s  ∈ Yb, 

by the induction hypothesis. Now the result is obvious.  

Let now Supp σa ⊆ Sa(k), for k ≠ 1. Pick  

b
1r  ∈ arg )s,(sfmax b

1
aa

1Yb
1s ∈

 

and let us denote  

b
0Y  = {sb ∈ Yb  b

Y spr b
1

 = b
1r }. 

Let a
0Y  := Supp s  and denote  

fa (
a

s ,
b

s ) = ),(fminmax a

YY a
o

b
0

⋅⋅ , 

fa ( as , bs ) = ),(fmaxmin a

YY a
o

b
0

⋅⋅ . 

Then, for all sb ∈ Yb,  

fa (sa, sb) ≤ fa (sa, bs ) ≤ fa ( as , bs ) = fa (
a

s ,
b

s ) ≤ fa (
a

s ,sb), 
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where the first inequality comes from the choice of b
1r , the second one from the 

definition of min max, the third one from theorem 1.4 and the last one from the  
definition of max min. The choice of s b leads to the existence of sb ∈ Yb with  

fa ( a
s ,sb) > fa (sa, sb), 

as required. 

Now, suppose m(O)≠a. Let σa∈∆(Sa) be such that, for all the strategies sb∈Yb, 
one has  

fa (σa, sb) ≥ fa (sa, sb), 

with a strict inequality for some sb ∈ Yb. Let us denote by sa = ( a
1s , …, a

Ks ). For each 
k having the property that Yb ∩ Sb(k) ≠ ∅,  define  

a
ks ( a

kr ) = ∑
=∈ a

k
a

a
ks

aa rrpr:Sr

aa )(rs . 

It is readily verified that a
ks  ∈ ∆( a

KS ). For each k with Yb ∩ Sb(k) ≠ ∅,  

fa ( a
ks , sb) ≥ fa( a

ks , sb), for all sb ∈ Yb ∩ Sb(k). 

Moreover, there exists k, with sb ∈ Yb ∩ Sb(k), such that  

fa ( a
ks , sb) > fa ( a

ks , sb). 

By the induction hypothesis, for each such k, there exists a
kr  ∈ Sa(k) with fa ( a

kr , sb) 

≥ fa ( a
ks , sb), for every sb ∈ Yb ∩ Sb(k) and strict inequality for some sb∈Yb∩Sb(k). For 

all other k, set a
kr = a

ks . Let us denote by ra = ( a
1r ,…, a

Kr ); it is readily verified that ra 
satisfies the required property.♦  

Among the games satisfying the tube condition one can find the Japanese go 
and the well-known draughts. In fact, each perfect information game that develops 
in conditions of equal opportunities for the players is a tube shaped game. Also, in 
economics, in investment planning and in marketing one can find problems 
needing the above-presented procedure.  
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